PMM U.S.S.R.,Vo0l.44,pp.659- 662 0021-8928/81/5 0659 $7.50/0
Copyright Pergamon Press Ltd.1981.Printed in U.K.

uDC 62-50

ON THE CONSTRUCTION OF STABLE BRIDGES

V. I. UKHOBOTOV

A method of constructing stable bridges is described, and a class of games for which
this method makes it possible to construct such bridge in explicit formis indicated.

1. Let us consider a controlled process whose equations of motion are of the form

2 = f(z,u,v), 2€ R* ue UCR", ve VCR" (1.1)

A closed set Z is specified in R" . The maximal u-stable bridge /1/ leading to the
target Z at the specified time is to be constructed.

Polynomial mapping 7, /2/ may be used for constructing the bridge. Let the set X CR"
and the number o¢>0 be specified. Then T,(X) 1is a set of points ze R™ for each of which
it is possible to indicate on any measurable control v(f)eV a measurable control u(t)elU
such that z(o)= X, where :z(o) is the solution of system (1.1) with the initial condition
2 (0) = z.

By imposing on the right-hand side of system (1.1) and on the sets ¢ and V certain con-
ditions we impart on the mapping 7, the following properties: 1) if set X is closed, then
T5{X) 1is also closed; 2) if XCX,, then T (X)CT,(X) 3) T,(X)=X, and 4) T (T, (X))
(X).

A collection of closed sets (which we denote by w(t)) that satisfy the inclusion
To(W( —o0) DW() and the equality WwW(0) =2 was constructed in /2/ using mapping 7,. This
collection of sets satisfies among other properties, the following maximality condition: if
z& W(t), there exists finite set of positive numbers o,, ..., 6y whose sum equals ¢, and
PE To (o Tg (2) )

Let us show another scheme of constructing a maximal u -stable bridge W(t). For integral
k> we set WF(0)=Z , and for >0 we determine W?*(t) by the recurrent formula

TU:-HH

W) =T, 2), . W= [ T (W e—1) (1.2)

0TS

For every k>1 and (>0 the constructed sets are closed.
Lemma 1.1. ws () wh() when k>1 and :>0.

Proof. When i =1 the required inclusion follows from (1.2) and property 4 of mapping
Ts.
°" Let for some & >»1 the required inclusion is satisfied for all ¢> 0. Thenusing property
2 of mapping T,, we obtain

Wy = 0 T VR —ty N T (PF(— ) = WLy
(BN 0TSt

Lemma 1.2. For any ¢>0 and any set o,... oy, consisting of & positive numbers whose
sum is equal ¢ the inclusion

WE() C Ty (. Ty, (2) )

3
is satisfied.

Proof. As implied by (1.2) the required inclusion is satisfied when k=1, Let the
inclusion which is being proved be satisfied for some k>t and all ¢> 0. Then, as implied
by (1.2) and property 2 of mapping 7, the inclusion

h+1 - ok — ”
W) T, (WE(t — 0))) C Ty (Tg, o0 Ty, (2) )
is satisfied for any set o,.... 0, consisting of k41 positive numbers whose sum is equal ¢,
Theorem. W = [ Wk().
k>0

Proof. when -0, the left- and right-hand sides of this equality contain the set 2z,
Consider the case of ¢>0. By induction with respect to % we shall prove that W(t)C
Wk (1) for all k>»1. When & =1 we have
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Wit)C To(W(O0)) = T (Z) = W' (1)

Let the inclusion that is being proved be satisfied for some k>1 for all ¢>0. Then
for 01t
W T (W(t—7) CT Wkt — 1)
from which and (1.2) follows the inclusion W (¢) C Wi (4).

Let us now show that W) D W*(¢). Let the point z& w(:). Then, as implied by the
maximality condition of bridge W(t), there exists a finite set of positive numbers og.... G
whose sum is equal ¢, and z& T, (... T(,i (Z) ...).

This and Lemma 1.2 show that :& Wi(:). Hence &N W¢() and, consequently, the required
inclusion is proved.

Corollary 1. Let there exist numbers # >0 and k>1 such that W™l = Wiy for
all 0<t<<t. Then W) =Wk (t) for 0<t<t,.

Proof. 1t follows from the condition that Wwitl() — Wi (1) and (1.2) that Wi@) = Wwi(@)
for all i>k and 0< t<t. The required equality follows from this and the previous theorem.

Corollary 2. Let the conditions of the preceding corollary be satisfied, and let there
exist a sequence t; wif,t;>1¢ such that the sets Wk(;) are empty. Then W(:)— Wii(:) for all
t>0.

Proof. Let us show that witt(y) = Wh2(s) for all ¢t>0. For this it is sufficient to

show that the set W1 (t) is empty for any :>t,.
Let us take t; such that 7T=t-1¢>0. It follows then from (1.2) that Wk () C T (W ().

The set in the right-hand side of this inclusion is empty.
2. Let us consider the linear game

22 =C—u-tv,zeR, ueUCR, ve VCR" (2.1)

where C 1is a constant matrix, and y and V convex compacts.

We assume that an m-dimensional Euclidean space R™ and the linear mapping =n:R"-»RT"
are specified. A closed set E 1is specified in R™. The terminal set 2z is specified as
follows:

Z={ze=R": 1z e E} (2.2)
We introduce the notation
12 tz
m )y =mel®, Ty (g, t) == an(l)Udt, J-z(tntz):sﬂl(')"'dt (2.3)
?1 fy

Then using the definition of the geometric remainder * of two sets /3/, it is possible

to show that for any 0{t<t the set TT(TH(Z)) is the aggregate :ze R" of the form

ity ze (((E+J10,t— ) =T, 0, — ) + Jy(t — 1, ) 2 T, (¢ — 1,8) (2.4)

Assumption 1. There exists in R™ the basis =z, ..., z, and continuous functions g; () <
A;(t),i=1,...,m such that for any t>0

YU ={zsR™:a; ()< (2, 2) < A;(1), i=1, ..., m} (2.5)

where (z;, 2) is a scalar product.
Note some of the properties of polyhedrons of form (2.5).

Let numbers p; < P;,i=1,...,m. be specified. We set
P=fzeR™: p;<(z;,2) < P;y i=1, ..., m} (2.6)
Lemma 2.1. Let B be a compact in R™, and b; — min (z;, r} and B; = max (z;, %) s where
min and max are taken with respect to ze B. Then
PEB={ze=R™:p;—b;< (3, < P;— B, i=1, ..., m} (2.7)
Proof. Let z belong to the set appearing in the right-hand side of (2.7). Let us take

any vector yeB8 and show that =z4-ye=P. We have p; —b; < (2, 2) < P; —B; and b, < (v, 9) < B,
Adding these inequalities and taking into account the form of set (2.6) we obtain the required
inclusion.

Let r=P*B. Then z+ye=P for any y=B. Hence p, (s, 2)+ (r;, )~ #; for any yeB.
Thus, taking into account the definition of numbers 5, and B8; we conclude that « belongs to
the set appearing in the right-hand side of (2.7).
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Lemma (2.2). Let the numbers b&;< By, i=1,...,m be given. We set
B={reR™: b < (g, 2)<<B;, i =1, ..., m}
Then
P+B={z=R™:p;+b,<(x;, )< P;+By, i=1, ..., m} (2.8)

Proof. Let » belong to set M which appears at the right-hand side of (2.8). If we
can find a vector y=8 such that z —ye= P , the inclusion ze P + B will be proved.
The inequalities that are satisfied by the numbers (z;, z) imply that

(1, 2) = (Py + By + py+ b+ M (P + By — py — ) 12, | 4| < 1 (2.9)
Since =, ..., z, is the basis in R™, there exists a vector yeA™ such that
(73 ) =By + b+ 2 (By — &) } 2
From this and (2.9) follows that
(ot —y) =(Py +p; + A (Py — p)) 12
Taking into account that |A;[<1, we obtain yeB and =z—yeP.
The inclusion P -+ B C M directly follows from the form of sets P and B.

Using Lemma 2.2. and Assumption 1 it is possible to show that the set Jy(, 1), (2.3) is

of the form
1

ta
Ji (e 12):{IER"‘:Sai(t)dt<(xi,1)<SAi(t)dt, i=1,...,m} (2.10)
i &
Assumption 2. There exist numbers ¢ <B;(i=1,...,m) such that the set E in equality
(2.2) is of the form
E={(zeR™: g <(zy 0y < By i-=1, ..., m}
We introduce the notation /

t t
bi (t) = ming (w7, 2), By (1) = maxe (1, )y s e m () V, w0 ={@@—b, ar, vo={4,m—B @)
0 0

set t1:=0 in (2.4) and, using Lemmas 2.1 and 2.2 and equality (2.10), obtain

Wi(e) - fz= R + ()< (@, (D) < B +v (), i=1, ... m (2.11)
Let
th=sup 206+ WD) <Bi+vi(r), 0T, i=1,...,m} (2.12)

Then for all 0< <t set (2.11) is nonempty. It follows from (2.4), Lemmas 2.1 and 2.2
that 7.(T, (%) =T:(2) for o <{tvt <1, Hence W2(t)=WY) for 0ty

Let #, =+, then from Corollary 1 we obtain W () = W'(t) for all ¢>0.

If ¢ <+, then from the definition of the number ¢ in (2.12) and from equality (2.11)
follows that there exists a sequence of numbers ¢ »¢, ¢ >t such that the sets Wi () are
empty. By virtue of Corollary 2W () = W32(@). In other words, W) =T:(2) for C<t<¢t, and
the set W (/) is empty for >,

3. The result obtained in Sect.2 can be used for solving the game problem with fixed
time ¢, and final payoff defined by
g (2 (ty)) == max | (g, az (1)) | (3.1)
Tsism

Having selected control u, the first player strives to minimize the quantity (3.1),
while the second tries to maximize it.
For the determination of the value ¢ (z) of such game (z is the initial position) we follow
/2/. For each >0 we set
EMP)-{c=R™: — B (zi, 2) <P, i=2:1,...,m}
Then, as implied by (3.1), the set Z(f)of those points :z= R" at which g <p 1is of the
form

Z(P):={z= R":aze EP) (3.2)
We denote by w (s, B} the stable bridge which leads to target (3.2). 1In this notation
the value of the game is defined by

G(z) -=min {f =012 W(t, B} (3.3)
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If we set in (2.11) and (2.12) & := —B, fi -- §, the number ¢ in (2.12) depends on 8,
i.e. 4 --t(f). From (3.3), (2.11), and (2.12) we obtain that G (z) is equal to the smallest
of numbers Pp >0 that satisfy the following two inequalities:

<t
1ina<)§n(| (ri, t (t) ) — (Vi lt) + i () /2] (i) —vi 0N/ 2) <8

of which the first shows that the set W{(¢, ) is nonempty, and the second is equivalent to
the inclusion ze= W (t,, §)-
As an example, let us consider the game

2 =23 v, % =gy, vt
2 =y, 2 =y, a1, w1
Let the final payoff be g(z(t)) - max{z (&) [, | (4) ). Calculation using the scheme expounded
above show that the value of the game is of the following form:
G(2) = Gy (2) == max (| zy & tyzy [ 2z -+ tizg D -ty — 02 for
<1

G (z) — max (Y, G, () for # >1
Note that the successive procedures of constructing the function of the payoff value or
of the minimax in the game of convergence at a specified time were considered, e.g., in /4,5/.
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